- PII
- S30345057S2686738925020109-1
- DOI
- 10.7868/S3034505725020109
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 521 / Issue number 1
- Pages
- 225-228
- Abstract
- Previously, we created a modular nanotransporter (MNT) containing a monobody to Keap1, an intracellular protein inhibitor of the Nrf2 transcription factor that controls cellular protection from oxidative stress and is capable of interacting with Keap1 in hepatocytes and protect this cells from the effects of hydrogen peroxide. Oxidative liver damage by acetaminophen was used as a model to study the antitoxic effect of this MNT. Intraperitoneal injection of acetaminophen to mice resulted in an increase in the level of alanine aminotransferase and aspartate aminotransferase in the blood, as well as in liver edema. A significant decrease in the level of these enzymes in the blood, along with a decrease in liver edema, was observed after preliminary intravenous administration of MNT 2 hours before the acetaminophen injection. The results obtained can serve as a basis for creating drugs aimed at treating diseases associated with oxidative stress.
- Keywords
- модульные нанотранспортеры монободи Nrf2 Keap1 парацетамол АЛТ АСТ однофотонная эмиссионная компьютерная томография
- Date of publication
- 15.04.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 40
References
- 1. Bellezza I., Giambanco I., Minelli A., et al. // Acta Mol. Cell Res. 2018. V. 1865(5). P. 721-733.
- 2. Hayes J.D., Dinkova-Kostova A.T. // Trends Biochem. Sci. 2014. V. 39(4). P. 199-218.
- 3. Ulasov A.V., Rosenkranz A.A., Georgiev G.P., et al. // Life Sci. 2022. V. 291. 120111.
- 4. Robledinos-Anton N., Fernandez-Gines R., Manda G., et al. // Oxid. Med. Cell Longev. 2019. V. 2019. 9372182.
- 5. Ngo V., Duennwald M.L. // Antioxidants. (Basel). 2022. V. 11(12).
- 6. Taguchi K., Kensler T.W. // Arch. Pharm. Res. 2020. V. 43(3). P. 337-349.
- 7. Patra U., Mukhopadhyay U., Sarkar R., et al. // Antivir. Res. 2019. V. 161. P. 53-62.
- 8. Olagnier D., Farahani E., Thyrsted J., et al. // Nat.Commun. 2020. V. 11. 4938.
- 9. Khramtsov Y.V., Ulasov A.V., Slastnikova T.A., et al. // Pharmaceutics. 2023. V. 15. 2687.
- 10. Khramtsov Y.V., Ulasov A.V., Rosenkranz A.A., et al. // Pharmaceutics. 2024. V. 16. 1345.
- 11. Lee W.M. // Hepatol. 2017. V. 67. P. 1324-1331.
- 12. McGill M.R., Williams C.D., Xie Y., et al. // Toxicol. Appl. Pharmacol. 2012. V. 264. P. 387-394.
- 13. Vorobyeva A., Bragina O., Altai M., et al. // Contrast. Media Mol. Imaging. 2018. V. 2018. 6930425.
- 14. Steffens M. G., Kranenborg M.H., O.C. Boerman O.C., et al. // Cancer Biother. Radiopharm. 1998. V. 13. P. 133-139.
- 15. Ferris T., Carroll L., Jenner S., et al. // J. Labelled Comp Radiopharm. 2021. V. 64. P. 92-108.
- 16. Bruinstroop E., van der Spek A.H., Boelen A. // Eur. Thyroid J. 2023. V. 12. e220211.
- 17. Dohan O., De la Vieja A., Paroder V., et al. // Endocr. Rev. 2003. V. 24. P. 48-77.
- 18. Shen Z., Wang Y., Su Z., et al. // Chem. Biol.Interact. 2018. V. 282. P. 22-28.