RAS PresidiumДоклады Российской академии наук. Науки о жизни Doklady Biological Sciences

  • ISSN (Print) 2686-7389
  • ISSN (Online) 3034-5057

MODULAR NANOTRANSPORTERS CONTAINING KEAP1 MONOBODIES ARE CAPABLE OF REDUCING THE TOXIC EFFECT OF ACETAMINOPHEN ON THE LIVER OF MICE

PII
S30345057S2686738925020109-1
DOI
10.7868/S3034505725020109
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 521 / Issue number 1
Pages
225-228
Abstract
Previously, we created a modular nanotransporter (MNT) containing a monobody to Keap1, an intracellular protein inhibitor of the Nrf2 transcription factor that controls cellular protection from oxidative stress and is capable of interacting with Keap1 in hepatocytes and protect this cells from the effects of hydrogen peroxide. Oxidative liver damage by acetaminophen was used as a model to study the antitoxic effect of this MNT. Intraperitoneal injection of acetaminophen to mice resulted in an increase in the level of alanine aminotransferase and aspartate aminotransferase in the blood, as well as in liver edema. A significant decrease in the level of these enzymes in the blood, along with a decrease in liver edema, was observed after preliminary intravenous administration of MNT 2 hours before the acetaminophen injection. The results obtained can serve as a basis for creating drugs aimed at treating diseases associated with oxidative stress.
Keywords
модульные нанотранспортеры монободи Nrf2 Keap1 парацетамол АЛТ АСТ однофотонная эмиссионная компьютерная томография
Date of publication
15.04.2025
Year of publication
2025
Number of purchasers
0
Views
40

References

  1. 1. Bellezza I., Giambanco I., Minelli A., et al. // Acta Mol. Cell Res. 2018. V. 1865(5). P. 721-733.
  2. 2. Hayes J.D., Dinkova-Kostova A.T. // Trends Biochem. Sci. 2014. V. 39(4). P. 199-218.
  3. 3. Ulasov A.V., Rosenkranz A.A., Georgiev G.P., et al. // Life Sci. 2022. V. 291. 120111.
  4. 4. Robledinos-Anton N., Fernandez-Gines R., Manda G., et al. // Oxid. Med. Cell Longev. 2019. V. 2019. 9372182.
  5. 5. Ngo V., Duennwald M.L. // Antioxidants. (Basel). 2022. V. 11(12).
  6. 6. Taguchi K., Kensler T.W. // Arch. Pharm. Res. 2020. V. 43(3). P. 337-349.
  7. 7. Patra U., Mukhopadhyay U., Sarkar R., et al. // Antivir. Res. 2019. V. 161. P. 53-62.
  8. 8. Olagnier D., Farahani E., Thyrsted J., et al. // Nat.Commun. 2020. V. 11. 4938.
  9. 9. Khramtsov Y.V., Ulasov A.V., Slastnikova T.A., et al. // Pharmaceutics. 2023. V. 15. 2687.
  10. 10. Khramtsov Y.V., Ulasov A.V., Rosenkranz A.A., et al. // Pharmaceutics. 2024. V. 16. 1345.
  11. 11. Lee W.M. // Hepatol. 2017. V. 67. P. 1324-1331.
  12. 12. McGill M.R., Williams C.D., Xie Y., et al. // Toxicol. Appl. Pharmacol. 2012. V. 264. P. 387-394.
  13. 13. Vorobyeva A., Bragina O., Altai M., et al. // Contrast. Media Mol. Imaging. 2018. V. 2018. 6930425.
  14. 14. Steffens M. G., Kranenborg M.H., O.C. Boerman O.C., et al. // Cancer Biother. Radiopharm. 1998. V. 13. P. 133-139.
  15. 15. Ferris T., Carroll L., Jenner S., et al. // J. Labelled Comp Radiopharm. 2021. V. 64. P. 92-108.
  16. 16. Bruinstroop E., van der Spek A.H., Boelen A. // Eur. Thyroid J. 2023. V. 12. e220211.
  17. 17. Dohan O., De la Vieja A., Paroder V., et al. // Endocr. Rev. 2003. V. 24. P. 48-77.
  18. 18. Shen Z., Wang Y., Su Z., et al. // Chem. Biol.Interact. 2018. V. 282. P. 22-28.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library