RAS PresidiumДоклады Российской академии наук. Науки о жизни Doklady Biological Sciences

  • ISSN (Print) 2686-7389
  • ISSN (Online) 3034-5057

INVESTIGATION OF THE FUNCTIONAL ROLE OF THE CONSERVED SEQUENCE AT THE 5’-END OF THE FOURTH INTRON OF THE MOD(MDG4) GENE IN TRANS- SPLICING IN DROSOPHILA MELANOGASTER

PII
S30345057S2686738925020098-1
DOI
10.7868/S3034505725020098
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 521 / Issue number 1
Pages
219-224
Abstract
Alternative splicing is an important mechanism that provides genetic diversity of proteins. Unique loci have been identified in Drosophila melanogaster, where mRNA diversity arises as a result of trans-splicing - a process in which exons from different pre-mRNAs are joined together. The trans-splicing in the mod(mdg4) locus, which encodes more than 31 isoforms, has been studied in detail. Important elements for this process include previously described conserved sequences in the fourth intron. The aim of this study is to further characterize the conserved motifs of the fourth intron, specifically the element at the 5’-end of the intron. Using model transgenic lines, it has been shown that introduced changes in the sequence of the studied element lead to a disruption of trans-splicing. In contrast, similar changes in the endogenous locus did not result in a disruption of trans-splicing. Thus, the conserved element plays a role in transsplicing but is not critical.
Keywords
альтернативный сплайсинг транс-сплайсинг Drosophila melanogaster mod(mdg4) сайты сплайсинга
Date of publication
15.04.2025
Year of publication
2025
Number of purchasers
0
Views
40

References

  1. 1. Wright C.J., Smith C.W.J., Jiggins C.D. Alternative splicing as a source of phenotypic diversity. // Nat Rev Genet, 2022, № 23(11): P. 697-710.
  2. 2. Labrador M., Mongelard F., Plata-Rengifo P., et al. Protein encoding by both DNA strands. // Nature, 2001, № 409(6823): P. 1000.
  3. 3. Horiuchi T., Giniger E., Aigaki T. Alternative trans-splicing of constant and variable exons of a Drosophila axon guidance gene, lola. // Genes Dev, 2003, № 17(20): P. 2496-501.
  4. 4. Shi X., Singh S., Lin E., et al. Chimeric RNAs in cancer. // Adv Clin Chem, 2021, № 100: P. 1-35.
  5. 5. Tikhonov M., Utkina M., Maksimenko O., et al. Conserved sequences in the Drosophila mod(mdg4) intron promote poly(A)-independent transcription termination and trans-splicing. // Nucleic Acids Res, 2018, № 46(20): P. 10608-10618.
  6. 6. Gao J.L., Fan Y.J., Wang X.Y., et al. A conserved intronic U1 snRNP-binding sequence promotes trans-splicing in Drosophila. // Genes Dev, 2015, № 29(7): P. 760-71.
  7. 7. McManus C.J., Duff M.O., Eipper-Mains J., et al. Global analysis of trans-splicing in Drosophila. // Proc Natl Acad Sci USA, 2010, № 107(29): P. 12975-9.
  8. 8. Bonchuk A.N., Balagurov K.I., Baradaran R., et al. The Arthropoda-specific Tramtrack group BTB protein domains use previously unknown interface to form hexamers. // Elife, 2024, № 13.
  9. 9. Melnikova L., Kostyuchenko M., Molodina V., et al. Multiple interactions are involved in a highly specific association of the Mod(mdg4)-67.2 isoform with the Su(Hw) sites in Drosophila. // Open Biol, 2017, № 7(10).
  10. 10. Soldatova Iu., Shepelev M., Georgiev P., et al. A Novel Mechanism for Transcription Termination in the mod(mdg4) Locus of Drosophila melanogaster. // Biology (Basel), 2024 in press.
  11. 11. Kaida D., Berg M.G., Younis I., et al. U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation. // Nature, 2010, № 468(7324): P. 664-8.
  12. 12. Tikhonov M., Georgiev P., Maksimenko O.Competition within Introns: Splicing Wins over Polyadenylation via a General Mechanism. // Acta Naturae, 2013, № 5(4): P. 52-61.
  13. 13. Bischof J., Maeda R.K., Hediger M., et al. An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. // Proc Natl Acad Sci U S A, 2007, № 104(9): P. 3312-7.
  14. 14. Hernandez G., Vazquez-Pianzola P., Sierra J.M., et al.Internal ribosome entry site drives cap-independent translation of reaper and heat shock protein 70 mRNAs in Drosophila embryos. // RNA, 2004, № 10(11): P. 1783--97.
  15. 15. Zhang X., Koolhaas W.H., Schnorrer F. A versatile two-step CRISPR- and RMCE-based strategy for efficient genome engineering in Drosophila. // G3 (Bethesda), 2014, № 4(12): P. 2409-18.
  16. 16. Ozturk-Colak A., Marygold S.J., Antonazzo G., et al. FlyBase: updates to the Drosophila genes and genomes database. // Genetics, 2024, № 227(1).
  17. 17. Crooks G.E., Hon G., Chandonia J.M., et al. WebLogo: a sequence logo generator. // Genome Res, 2004, № 14(6): P. 1188-90.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library