RAS PresidiumДоклады Российской академии наук. Науки о жизни Doklady Biological Sciences

  • ISSN (Print) 2686-7389
  • ISSN (Online) 3034-5057

Ascorbate biosynthesis and recycling genes are involved in the responses of garlic Allium sativum L. plants to Fusarium proliferatum infection

PII
S2686738925010191-1
DOI
10.31857/S2686738925010191
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 520 / Issue number 1
Pages
117-121
Abstract
The expression profile of key genes of ascorbate biosynthesis (VTC2, GPP, GalDH, GalLDH) and recycling (MDHAR1, MDHAR4, MDHAR5) was determined in response to infection with the fungal pathogen Fusarium proliferatum in garlic cultivars related (Podnebesny) and sensitive (Dubkovsky) to Fusarium rot. It was found that differences in resistance to Fusarium lead to discrepancies in the dynamics and expression of individual genes of the ascorbate pathway, as well as in ascorbate content. It was shown that in response to infection, the expression level of the MDHAR4 gene increases in the resistant cultivar and decreases in the Fusarium-sensitive accession. As infection progresses, the expression levels of the VTC2 and GalLDH genes increase significantly (higher in the cv. Dubkovsky than in the cv. Podnebesny). In both cultivars, the ascorbate content increases (1.5 times higher in the cv. Dubkovsky than in the cv. Podnebesny).
Keywords
чеснок Allium sativum метаболизм аскорбата биотический стресс грибной патоген Fusarium proliferatum
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
18

References

  1. 1. Smirnoff N. // Free Radical Biology and Medicine. 2018. V. 22. P. 116–129.
  2. 2. Gill S.S., Tuteja N. // Plant Physiol. Biochem. 2010. V. 48. P. 909.
  3. 3. Apel K, Hirt H. // Annu. Rev. Plant Biol. 2004. V. 55. P. 373–399.
  4. 4. Kuźniak E., Kopczewski T., Chojak-Koźniewska J. // In: Hossain, M., et al. (eds) Ascorbic Acid in Plant Growth, Development and Stress Tolerance. Springer. 2017.
  5. 5. Zurbriggen M.D., Carrillo N., Hajirezaei M.R. // Plant Signal Behav. 2010. V. 5(4). P. 393–396.
  6. 6. Barth C., Moeder W., Klessig D.F., et al. // Plant Physiol. 2004. V. 134(4). P. 1784–1792.
  7. 7. Abou-Attia M.A., Wang X., Nashaat Al-Attala M., et al. // Physiol. Plant. 2016. V. 156(3). P. 262–277.
  8. 8. Broad R.C., Bonneau J.P., Hellens R.P., et al. // Int. J. Mol. Sci. 2020. V. 21. 1790.
  9. 9. Ali B., Pantha S., Acharya R., et al. // J. Plant Physiol. 2019. V. 240. 152998.
  10. 10. Anisimova O. K., Shchennikova A. V., Kochieva E.Z., et al. // Russian Journal of Genetics. 2022. V. 58(7). P. 773–782.
  11. 11. Kuzniak E., Skłodowska M. // J. Exp. Bot. 2004. V. 55. P. 605–612.
  12. 12. Anisimova O.K., Seredin T.M., Shchennikova A.V., et al. // Russian Journal of Plant Physiology. 2021. V. 68. P. 85–93.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library