RAS PresidiumДоклады Российской академии наук. Науки о жизни Doklady Biological Sciences

  • ISSN (Print) 2686-7389
  • ISSN (Online) 3034-5057

UNUSUAL PATTERN OF CEREBRAL ELECTRICAL ACTIVITY IN THE MONGOLIAN HAMSTER (ALLOCRICETULUS CURTATUS) DURING HETEROTHERMIA

PII
S30345057S2686738925020197-1
DOI
10.7868/S3034505725020197
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 521 / Issue number 1
Pages
285-292
Abstract
Electroencephalogram (EEG), brain and abdominal temperature, and motor activity were recorded for the first time in 18 adult males of facultative hibernator, the Mongolian hamster, during hibernation under controlled laboratory conditions in winter. At room temperature, clear synchronous circadian rhythms of motor activity and body temperature were observed. In most animals, a gradual decrease in external temperature (from 24°C to 4°C) led to a significant increase in motor activity, combined with an increase in the amplitude of circadian oscillations of body temperature. Six hamsters demonstrated torpor bouts and hibernation with radical changes in the EEG up to reaching the isoelectric line, as well as the disappearance of oscillations of brain temperature. It has been found that Mongolian hamsters can easily enter and exit both a state of torpor and a fairly deep hibernation with a decrease in body temperature down to 10ºC during normal sleep periods.
Keywords
зимняя спячка ЭЭГ температура тела температура мозга двигательная активность монгольские хомячки
Date of publication
15.04.2025
Year of publication
2025
Number of purchasers
0
Views
42

References

  1. 1. Калабухов Н.И. Спячка млекопитающих. М.: Наука, 1985.
  2. 2. Ushakova M.V., Kropotkina M.V., Feoktistova N.Y., et al. // Rus. J. Ecol. 2012. V. 43. № 1. P. 62-66.
  3. 3. Shylo A.V. // Neurophysiology. 2015. V. 47. №. 1. P. 84-91.
  4. 4. Deboer T., Tobler I. // Neurosci. Lett. 1994. V. 166. № 1. P. 35-38.
  5. 5. Deboer T., Tobler I. // Neuroreport. 2000. V. 11. № 4. P. 881-885.
  6. 6. Palchykova S., Deboer T., Tobler I. // J. Sleep Res. 2002. V. 11. №. 4. P. 313-319.
  7. 7. Vyazovskiy V.V., Palchykova S., Achermann P., et al. // Cerebr. Cort. 2017. V. 27. № 2. P. 950-961.
  8. 8. Heller H.C., Ruby N.F. // Annu. Rev. Physiol. 2004. V. 66. P. 275-289.
  9. 9. Mohr S.M., Bagriantsev S.N., Gracheva E.O. // Annu. Rev. Cell Dev. Biol. 2020. V.36. P.13.1-13.24.
  10. 10. Feoktistova N.Yu., Naidenko S.V., Surov A.V., et al. // Rus. J. Ecol. 2013. V. 44. No. 1. P. 56-59.
  11. 11. Kovalzon V.M., Averina O.A., Minkov V.A., et al. // J. Evol. Biochem. Physiol. 2020. V. 56. № 5. P. 451-458.
  12. 12. Kovalzon V.M., Komarova A.D., Erofeeva M.N., et al. // Eur. Phys. J. Spec. Top. 2024. V. 233. P.659-670.
  13. 13. Harding E.C., Franks N.P., Wisden W. // Front. Neurosci. 2019. V. 13. Paper 336.
  14. 14. Украинцева Ю.В., Соловьева А.К. // Журнал неврологии и психиатрии им. С.С. Корсакова. 2023. Т. 123. №5 (вып. 2). С. 21-27.
  15. 15. Heller C. // Sleep. 2014. V. 37. №7. P. 1157-1158.
  16. 16. Ambler M., Hitrec T., Pickering A. Turn it off and on again: characteristics and control of torpor // Wellcome Open Research. 2022. V. 6. Article 313. doi:10.12688/wellcomeopenres.17379.2
  17. 17. Rothhaas R., Chung S. // Front. Neurosci. 2021. V. 15. Article 664781.
  18. 18. Hrvatin, S., Sun, S., Wilcox, O. F., et al. // Nature. 2020. V. 583. P. 115-121.
  19. 19. Huang Y.G., Flaherty S.J., Pothecary C.A., et al. // Sleep. 2021. V. 44. №9. Article zsab093.
  20. 20. Shi Z., Qin M., Huang L., et al. // Biol. Rev. 2021. V. 96. No. 2. P. 642-672.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library