RAS PresidiumДоклады Российской академии наук. Науки о жизни Doklady Biological Sciences

  • ISSN (Print) 2686-7389
  • ISSN (Online) 3034-5057

OPTIMIZATION OF A549 CELL TRANSFECTION EFFICIENCY WITH A PLASMID ENCODINGTHE N-PROTEIN OF THE SARS- COV-2 VIRUS

PII
S30345057S2686738925020064-1
DOI
10.7868/S3034505725020064
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 521 / Issue number 1
Pages
204-207
Abstract
To test new antiviral drugs aimed at degrading the nucleocapsid protein (N-protein) of the SARS-CoV-2 virus, it is desirable to have cells expressing the N-protein, for which it is necessary to find conditions for the maximum achievable efficiency of cell transfection with a plasmid encoding this protein. For transfection, polyplexes were used consisting of a plasmid encoding the N-protein fused with the mRuby3 fluorescent protein and polyethyleneimine (PEI)-polyethylene glycol (PEG)-TAT peptide block copolymers. The dependence of the transfection efficiency of human lung adenocarcinoma A549 cells on the PEG/PEI and N/P ratios (the ratio of nitrogen in PEI to phosphate in DNA) was studied. Significant positive correlations were shown between transfection efficiency determined by flow cytometry, the N/P ratio, and the proportion of polyplexes sized 40-54 nm. The data obtained can serve as a basis for creating an animal model of lung cells transiently expressing the N protein of the SARS-CoV-2 virus.
Keywords
полиплексы полиэтиленимин нуклеокапсидный белок SARS-CoV-2 проточная цитофлуориметрия динамическое светорассеяние
Date of publication
15.04.2025
Year of publication
2025
Number of purchasers
0
Views
49

References

  1. 1. Surjit M., Lal S. K. // Infect Genet Evol. 2008. V. 8. P. 397-405.
  2. 2. Wu C., Zheng, M. // Preprints. 2020. 2020020247.
  3. 3. Prajapat M., Sarma P., Shekhar N., et al. // Indian J Pharmacol. 2020. V. 52. P. 56.
  4. 4. Bestion E., Halfon P., Mezouar S., et al. // Viruses. 2022. V. 14. 1507.
  5. 5. Ulasov A. V., Khramtsov Y. V., Trusov G. A., et al. // Mol. Ther. 2011. V. 19. P. 103-112.
  6. 6. Shahbazi S., Haghighipour N., Soleymani S., et al. // Biotechnology letters. 2018. V. 40. P. 923-931.
  7. 7. Hall A., Lachelt U., Bartek J., et al. // Mol. Ther. 2017. V. 25. P. 1476-1490.
  8. 8. Трусов Г.А., Уласов А.В., Белецкая Е.А., и др. // ДАН. 2011. Т. 437. С. 266-268.
  9. 9. Perrine T. D., Landis W. R. // J. Polym. Sci. A1. 1967. V. 5. P. 1993-2003.
  10. 10. Kunath K., von Harpe A., Petersen H. et al. // Pharm. Res. 2002. V. 19. P. 810-817.
  11. 11. Gong X. W., Wei D. Z., He M. L. et al. // Talanta. 2007. V. 71. P. 381-384.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library