RAS PresidiumДоклады Российской академии наук. Науки о жизни Doklady Biological Sciences

  • ISSN (Print) 2686-7389
  • ISSN (Online) 3034-5057

In vitro and in vivo biodegradation of silk fabric scaffolds

PII
S2686738925010089-1
DOI
10.31857/S2686738925010089
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 520 / Issue number 1
Pages
45-49
Abstract
This study investigates the biodegradation of natural silk scaffolds made from gauze and satin fabrics under in vitro and in vivo conditions. Experiments were conducted using phosphate-buffered saline and Fenton’s reagent to model degradation. The samples demonstrated high stability under physiological conditions’ model and exhibited varying degradation rates under oxidative stress. In vivo studies on rats revealed good biocompatibility of the scaffolds and a gradual reduction in inflammatory responses. These findings highlight the potential of silk scaffolds for use in various areas of regenerative medicine.
Keywords
шелковые скаффолды биодеградируемые материалы регенеративная медицина биосовместимость тканевая инженерия
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
16

References

  1. 1. Котлярова М.С., Архипова А.Ю., Мойсенович А.М., и др. Биорезорбируемые скаффолды на основе фиброина для регенерации костной ткани // Вестник Московского университета. Серия 16. Биология. 2017. № 4. С. 228–228.
  2. 2. Котлярова М.С., Солдатенко А.С., Архипова А.Ю., и др. Фотоотверждаемые пленки на основе фиброина и желатина для регенерации кожных покровов // Вестник Московского университета. Серия 16. Биология. 2020. С. 23–30.
  3. 3. Bai S., Zhang W., Lu Q., et al. Silk nanofiber hydrogels with tunable modulus to regulate nerve stem cell fate // J. Mater. Chem. B. 2014. Vol. 2, No. 38. P. 6590–6600.
  4. 4. Dinis T.M., Elia R., Vidal G., et al. 3D multi-channel bi-functionalized silk electrospun conduits for peripheral nerve regeneration // J. Mech. Behav. Biomed. Mater. 2015. Vol. 41. P. 43–55. doi: 10.1016/j.jmbbm.2014.09.029. Epub 2014 Oct 13.
  5. 5. Settembrini A., Buongiovanni G., Settembrini P., et al. In-vivo evaluation of silk fibroin small-diameter vascular grafts: State of art of preclinical studies and animal models // Frontiers in Surgery. 2023. Vol. 10.
  6. 6. Vepari C., Kaplan D.L. Silk as a biomaterial // Prog. Polym. Sci. 2007. Vol. 32, No. 8-9. P. 991–1007. doi: 10.1016/j.progpolymsci.2007.05.013.
  7. 7. Cao Y., Wang B. Biodegradation of silk biomaterials // Int. J. Mol. Sci. 2009. Vol. 10. P. 1514–1524.
  8. 8. Сафонова Л.А., Боброва М.М., Ефимов А.Е., и др. Биодеградируемые материалы на основе тканей из натурального шелка как перспективные скаффолды для тканевой инженерии и регенеративной медицины // Вестник трансплантологии и искусственных органов. 2020. Т. 22, № 4. С. 105–114.
  9. 9. Агапов И.И., Агапова О.И., Ефимов А.Е., и др. Способ получения биодеградируемых скаффолдов на основе тканей из натурального шелка // Патент на изобретение RU 2653428 С1. 08.05.2018.
  10. 10. Muranov K.O. Fenton reaction in vivo and in vitro. Possibilities and limitations // Biochemistry (Mosc). 2024. Vol. 89, Suppl 1. P. S112–S126. doi: 10.1134/S0006297924140074.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library